

2015 Advanced Lithography:

Phase Measurements of EUV Mask Defects

Rene Claus

Yow-Gwo Wang, Markus Benk, Antoine Wojdyla, Alex Donoghue, David Johnson, Kenneth Goldberg, Andrew Neureuther, Patrick Naulleau, and Laura Waller

EUV Mask Defects

- Pits or particles in the substrate or multilayer will affect printing
- Can repair multilayer
- Can modify pattern
- Need to know what defect looks like
 - What is the phase/height?
 - What is the width?
 - Does it have amplitude?
- Want to measure using existing tools
 - AIMS tool

New Phase Retrieval Algorithm

Weak Object Assumption

Consider a rough mirror (or mask)

- Most of the light is reflected
- Some of the light is scattered
- The electric field leaving the mask can be expressed as the sum of these components

$$E = 1 + E_S$$

$$I = |1 + E_S|^2 = 1 + 2Re\{E_S\} + |E_S|^2$$

$$\longrightarrow Scattering$$

- - We can ignore Scattering-Scattering

Transfer Function

$$I = 1 + Re\{E_S\} * K_{re} + Im\{E_S\} * K_{im}$$

 For a weakly scattering object, we can express the intensity as two convolutions

$$F\{K_{re}\} = (P \cdot L) \star P + P \star (P \cdot L)$$

$$F\{K_{im}\} = (P \cdot L) \star P - P \star (P \cdot L)$$

P: pupil function, L: source shape

• $Re\{E_s\} \approx amplitude, Im\{E_s\} \approx phase$

$$E = (1+A)e^{i\phi} \approx 1 + A + i\phi$$

$$Re\{E_s\} \qquad Im\{E_s\}$$
(amplitude) (phase)

Coherent Transfer Function

Partially Coherent Transfer Function

Inverting the Transfer Functions

Iterative Algorithm

- Ideally scattering-scattering term is zero
 - Subtract term → becomes zero
- The iterative algorithm works reliably for defects even when they are large

SHARP

Zone Plate Microscope

Pixel Size: 15nm

NA: 0.33/4 (0.0825)

Wavelength:13.5nm

Programmable illumination

Phase Contrast vs Standard Data

- Measured same defect with different pupils
- Qualitatively very different measurements
- If the recovered object is the same, it's not an artifact

NA: 0.33/4

 $\sigma = 0.25$ illumination

Standard Pupil

Phase Contrast Pupil

Phase Contrast Imaging

Phase Contrast Pupil

Standard

- A phase contrast pupil has a phase shifting region
- Effectively switches phase and amplitude information

At Focus:

Phase Contrast

 $\sigma = 0.3$

Standard Zone Plate Results

Phase Contrast Zone Plate Results

Comparing Results

Algorithm works for: complicated pupil and partial coherence ($\sigma=0.25$)

Resolution Limited Defect

Very Small Native Defect

FWHM: 100nm, Height: 0.65nm, Absorption: 11%

Coherent results

Partial Coherence and Resolution

Sub-Resolution Defect Printability

- Sub-resolution defects appear shorter and wider than they are under Coherent illumination
- Partially coherent measurements give a more accurate (higher resolution) phase result
- They print differently when patterned
- Need to measure with partially coherently illumination or use higher NA inspection

16nm lines, dipole illumination 65nm defocus

Programmed Defect Study

T. Liang, "Growth and Printability of Multilayer Phase Defects on EUV Mask Blanks," JVSTB (2007).

Conclusion

- We've developed a new algorithm to get the phase and amplitude from measurements
 - Can use partially coherent illumination
 - Verified using phase contrast zone plate
- Small defects may be larger on the mask than seen with AIMS
 - Can use partially coherent illumination to get higher fidelity measurement of the mask phase
- Mask defects are not pure phase defects
 - Large defects have higher absorption

Acknowledgement

Thank you for your attention!

reneclaus@gmail.com

Questions?

reneclaus@gmail.com

